Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(14): 16288-16302, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617633

RESUMO

Targeted therapy revolutionizes the treatment of non-small-cell lung cancer (NSCLC), harboring molecular change. Epidermal growth factor receptor(EGFR) mutations play a crucial role in the development of NSCLC, serving as a pivotal factor in its pathogenesis. We elucidated the mechanisms of resistance and potential therapeutic strategies in NSCLC resistant to the EGFR-tyrosine kinase inhibitor (EGFR-TKI). This is achieved by identifying rare missense variants through whole exome sequencing (WES). The goal is to enhance our understanding, identify biomarkers, and lay the groundwork for targeted interventions, thereby offering hope for an improved NSCLC treatment landscape. We conducted WES analysis on 16 NSCLC samples with EGFR-TKI-resistant NSCLC obtained from SRA-NCBI (PRJEB50602) to reveal genomic profiles within the EGFR-TKI. Our findings showed that 48% of the variants were missense, and after filtering with the Ensembl variant effect predictor, 53 rare missense variants in 23 genes were identified as highly deleterious. Further examination using pathogenic tools like PredictSNP revealed 12 deleterious rare missense variants in 7 genes: ZNF717, PSPH, ESRRA, SEMA3G, PTPN7, CAVIN4, and MYBBP1A. Molecular dynamics simulation (MDS) suggested that the L385P variant alters the structural flexibility of ESRRA, potentially leading to unfolding of ERRα proteins. This could impact their function and alter ERRα expression. These insights from MDS enhance our understanding of the structural and dynamic consequences of the L385P ESRRA variant and provide valuable implications for subsequent therapeutic considerations and targeted interventions.

2.
ACS Omega ; 9(4): 4986-5001, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38313522

RESUMO

Precise estrus detection in sows is pivotal in increasing the productivity within the pork industry. Sows in estrus exhibit exclusive behaviors when exposed to either a live boar or the steroid pheromones androstenone and androstenol. Recently, a study employing solid-phase microextraction-gas chromatography-mass spectrometry has identified a novel salivary molecule in boars, known as quinoline. This finding has intriguing implications as a synthetic mixture of androstenone, androstenol, and quinoline induces estrus behaviors in sows. Nevertheless, the precise pheromonal characteristics of quinoline remain elusive. In this study, we validate and compare the binding efficiency of androstenone, androstenol, and quinoline with porcine olfactory receptor proteins (odorant-binding protein [OBP], pheromaxein, salivary lipocalin [SAL], and Von Ebner's gland protein [VEGP]) using molecular docking and molecular dynamics simulations. All protein-ligand complexes demonstrated stability, as evidenced by the root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA), and hydrogen-bond (H-bond) plots. Furthermore, quinoline displayed higher binding efficiency with OBP, measured at -85.456 ± 8.268 kJ/mol, compared to androstenone and androstenol, as determined by molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) calculations. Conversely, quinoline exhibited a lower binding efficacy when interacting with SAL, pheromaxein, and VEGP compared to androstenone and androstenol. These findings, in part, suggest the binding possibility of quinoline with carrier proteins and warrant further investigation to support the role of quinoline in porcine chemical communication.

3.
ACS Omega ; 8(46): 43856-43872, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38027370

RESUMO

Anaplastic lymphoma kinase (ALK) rearrangements occur in about 5% of nonsmall cell lung cancer (NSCLC) patients. Despite being first recognized as EML4-ALK, fusions with several additional genes have been identified, all of which cause constitutive activation of the ALK kinase and subsequently lead to tumor development. ALK inhibitors first-line crizotinib, second-line ceritinib, and alectinib are effective against NSCLC patients with these rearrangements. Patients progressing on crizotinib had various mutations in the ALK kinase domain. ALK fusion proteins are activated by oligomerization through the fusion partner, which leads to the autophosphorylation of the kinase's domain and consequent downstream activation. The proposed computational study focuses on understanding the activation mechanism of ALK and ATP binding of wild-type (WT) and I1171N/S/T mutations. We analyzed the conformational change of ALK I1171N/S/T mutations and ATP binding using molecular docking and molecular dynamics simulation approaches. According to principal component analysis and free energy landscape, it is clear that I1171N/S/T mutations in Apo and ATP showed different energy minima/unstable structures compared to WT-Apo. The results revealed that I1171N/S/T mutations and ATP binding significantly supported a change toward an active-state conformation, whereas WT-Apo remained inactive. We demonstrated that I1171N/S/T mutations are persistent in an active state and independent of ATP. The I1171S/T mutations showed greater intermolecular H-bonds with ATP than WT-ATP. The molecular mechanics Poisson-Boltzmann surface area analysis revealed that the I1171N/S/T mutation binding energy was similar to that of WT-ATP. This study shows that I1171N/S/T can form stable bonds with ATP and may contribute to a constitutively active kinase. Based on the Y1278-C1097 H-bond and E1167-K1150 salt bridge interaction, I1171N strongly promotes the constitutively active kinase independent of ATP. This structural mechanism study will aid in understanding the oncogenic activity of ALK and the basis for improving the ALK inhibitors.

4.
Curr Drug Metab ; 24(10): 684-699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927072

RESUMO

AIMS: To identify single nucleotide polymorphisms (SNPs) of paracetamol-metabolizing enzymes that can predict acute liver injury. BACKGROUND: Paracetamol is a commonly administered analgesic/antipyretic in critically ill and chronic renal failure patients and several SNPs influence the therapeutic and toxic effects. OBJECTIVE: To evaluate the role of machine learning algorithms (MLAs) and bioinformatics tools to delineate the predictor SNPs as well as to understand their molecular dynamics. METHODS: A cross-sectional study was undertaken by recruiting critically ill patients with chronic renal failure and administering intravenous paracetamol as a standard of care. Serum concentrations of paracetamol and the principal metabolites were estimated. Following SNPs were evaluated: CYP2E1*2, CYP2E1_-1295G>C, CYP2D6*10, CYP3A4*1B, CYP3A4*2, CYP1A2*1K, CYP1A2*6, CYP3A4*3, and CYP3A5*7. MLAs were used to identify the predictor genetic variable for acute liver failure. Bioinformatics tools such as Predict SNP2 and molecular docking (MD) were undertaken to evaluate the impact of the above SNPs with binding affinity to paracetamol. RESULTS: CYP2E1*2 and CYP1A2*1C genotypes were identified by MLAs to significantly predict hepatotoxicity. The predictSNP2 revealed that CYP1A2*3 was highly deleterious in all the tools. MD revealed binding energy of -5.5 Kcal/mol, -6.9 Kcal/mol, and -6.8 Kcal/mol for CYP1A2, CYP1A2*3, and CYP1A2*6 against paracetamol. MD simulations revealed that CYP1A2*3 and CYP1A2*6 missense variants in CYP1A2 affect the binding ability with paracetamol. In-silico techniques found that CYP1A2*2 and CYP1A2*6 are highly harmful. MD simulations revealed CYP3A4*2 (A>G) had decreased binding energy with paracetamol than CYP3A4, and CYP3A4*2(A>T) and CYP3A4*3 both have greater binding energy with paracetamol. CONCLUSION: Polymorphisms in CYP2E1, CYP1A2, CYP3A4, and CYP3A5 significantly influence paracetamol's clinical outcomes or binding affinity. Robust clinical studies are needed to identify these polymorphisms' clinical impact on the pharmacokinetics or pharmacodynamics of paracetamol.


Assuntos
Citocromo P-450 CYP1A2 , Falência Renal Crônica , Humanos , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Polimorfismo de Nucleotídeo Único , Simulação de Acoplamento Molecular , Estado Terminal , Estudos Transversais , Fígado/metabolismo , Falência Renal Crônica/metabolismo , Aprendizado de Máquina Supervisionado , Algoritmos
5.
J Biomol Struct Dyn ; : 1-12, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37334725

RESUMO

Aspartylglucosaminuria (AGU) is a lysosomal storage disorder caused by insufficient aspartylglucosaminidase (AGA) activity leading to chronic neurodegeneration. We utilized the PhosphoSitePlus tool to identify the AGA protein's phosphorylation sites. The phosphorylation was induced on the specific residue of the three-dimensional AGA protein, and the structural changes upon phosphorylation were studied via molecular dynamics simulation. Furthermore, the structural behaviour of C163S mutation and C163S mutation with adjacent phosphorylation was investigated. We have examined the structural impact of phosphorylated forms and C163S mutation in AGA. Molecular dynamics simulations (200 ns) exposed patterns of deviation, fluctuation, and change in compactness of Y178 phosphorylated AGA protein (Y178-p), T215 phosphorylated AGA protein (T215-p), T324 phosphorylated AGA protein (T324-p), C163S mutant AGA protein (C163S), and C163S mutation with Y178 phosphorylated AGA protein (C163S-Y178-p). Y178-p, T215-p, and C163S mutation demonstrated an increase in intramolecular hydrogen bonds, leading to greater compactness of the AGA forms. Principle component analysis (PCA) and Gibbs free energy of the phosphorylated/C163S mutation structures exhibit transition in motion/orientation than Wild type (WT). T215-p may be more dominant among these than the other studied phosphorylated forms. It might contribute to hydrolyzing L-asparagine functioning as an asparaginase, thereby regulating neurotransmitter activity. This study revealed structural insights into the phosphorylation of Y178, T215, and T324 in AGA protein. Additionally, it exposed the structural changes of the C163S mutation and C163S-Y178-p of AGA protein. This research will shed light on a better understanding of AGA's phosphorylated mechanism.Communicated by Ramaswamy H. Sarma.

6.
J Biomol Struct Dyn ; 41(24): 15584-15597, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37011004

RESUMO

Breast cancer biomarkers that detect marginally advanced stages are still challenging. The detection of specific abnormalities, targeted therapy selection, prognosis, and monitoring of treatment effectiveness over time are all made possible by circulating free DNA (cfDNA) analysis. The proposed study will detect specific genetic abnormalities from the plasma cfDNA of a female breast cancer patient by sequencing a cancer-related gene panel (MGM455 - Oncotrack Ultima), including 56 theranostic genes (SNVs and small INDELs). Initially, we determined the pathogenicity of the observed mutations using PredictSNP, iStable, Align-GVGD, and ConSurf servers. As a next step, molecular dynamics (MD) was implemented to determine the functional significance of SMAD4 mutation (V465M). Lastly, the mutant gene relationships were examined using the Cytoscape plug-in GeneMANIA. Using ClueGO, we determined the gene's functional enrichment and integrative analysis. The structural characteristics of SMAD4 V465M protein by MD simulation analysis further demonstrated that the mutation was deleterious. The simulation showed that the native structure was more significantly altered by the SMAD4 (V465M) mutation. Our findings suggest that SMAD4 V465M mutation might be significantly associated with breast cancer, and other patient-found mutations (AKT1-E17K and TP53-R175H) are synergistically involved in the process of SMAD4 translocate to nuclease, which affects the target gene translation. Therefore, this combination of gene mutations could alter the TGF-ß signaling pathway in BC. We further proposed that the SMAD4 protein loss may contribute to an aggressive phenotype by inhibiting the TGF-ß signaling pathway. Thus, breast cancer's SMAD4 (V465M) mutation might increase their invasive and metastatic capabilities.Communicated by Ramaswamy H. Sarma.


Assuntos
Neoplasias da Mama , Ácidos Nucleicos Livres , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Biomarcadores Tumorais/genética , Proteína Smad4/genética , Mutação , Fator de Crescimento Transformador beta/genética , Proteína Supressora de Tumor p53/genética , Proteínas Proto-Oncogênicas c-akt/genética
7.
Adv Protein Chem Struct Biol ; 135: 97-124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37061342

RESUMO

Cyclin-dependent kinase 6 (CDK6) is an essential kinase in cell cycle progression, which is a viable target for inhibitors in various malignancies, including breast cancer. This study aimed to virtually screen efficient compounds as new leads in treating breast cancer using a drug repurposing approach. Apoptosis regulatory compounds were taken from the seleckchem database. Molecular docking experiments were carried out in the presence of abemaciclib, a routinely used FDA drug. Compared to conventional drugs, the two compounds demonstrated a higher binding affinity for CDK6. Compounds (N-benzyl-6-[(4-hydroxyphenyl)methyl]-8-(naphthalen-1-ylmethyl)-4,7-dioxo-3,6,9,9a-tetrahydro-2H-pyrazino[1,2-a]pyrimidine-1-carboxamide) and (1'-[4-[1-(4-fluorophenyl)indol-3-yl]butyl]spiro[1H-2-benzofuran-3,4'-piperidine]) were discovered to have an inhibitory effect against CDK6 at -8.49 and -6.78kcal/mol, respectively, compared to -8.09kcal/mol of the control molecule, the interacting residues of these two new compounds were found to fall within the binding site of the CDK6 molecule. Both compounds exhibited equal ADME features compared with abemaciclib and would be well distributed and metabolized by the body with an appropriate druglikeness range. Lastly, molecular dynamics was initiated for 200ns for the selected potent inhibitors and abemaciclib as complexed with CDK6. The RMSD, RMSF, Rg, H-Bond interactions, SASA, PCA, FEL, and MM/PBSA analysis were performed for the complexes to assess the stability, fluctuations, radius of gyration, hydrogen bond interaction, solvent accessibility, essential dynamics, free energy landscape, and MM/PBSA. The selected two compounds are small molecules in the appropriate druglikeness range. The results observed in molecular docking and molecular dynamics simulations were most promising for two compounds, suggesting their potent inhibitory effect against CDK6. We propose that these candidate compounds can undergo in vitro validation and in vivo testing for their further use against cancer.


Assuntos
Neoplasias da Mama , Quinase 6 Dependente de Ciclina , Humanos , Feminino , Simulação de Acoplamento Molecular , Quinase 6 Dependente de Ciclina/uso terapêutico , Reposicionamento de Medicamentos , Simulação de Dinâmica Molecular , Proliferação de Células
8.
J Biomol Struct Dyn ; 41(21): 12338-12346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744526

RESUMO

Epidemiological link between HPV and SLE is evolving. The possibility of HPV infection-induced molecular mimicry and systemic lupus erythematosus (SLE) was elucidated through detailed in silico analyses. Conserved regions in the structural protein sequences of high-risk HPV types were inferred, and sequence homologies between viral and human peptides were identified to delineate proteins implicated in SLE. B-cell epitopes and MHC-class II binding were compiled using Immune Epitope Database and ProPred II analysis tool. Molecular modeling and molecular dynamics/simulation (MDS) were performed using AutoDock Vina and GROMACS, respectively. Sequence alignment revealed 32 conserved regions, and 27/32 viral peptides showed varying similarities to human peptides, rich in B-cell epitopes with superior accessibility, high hydrophilicity, antigenicity and disposition to bind many class-II HLA alleles. Molecular docking of 13 viral peptides homologous (100%) to human peptides implicated in SLE showed that VIR-PEP1 (QLFNKPYWL) and VIR-PEP2 (DTYRFVTS) exhibited higher binding affinities than corresponding human peptides to SLE predisposing HLA-DRB1 allele. MDS of these peptides showed that the viral peptides had superior folding, compactness, and a higher number of hydrogen bonds than human peptides throughout the simulation period. SASA analysis revealed that the VIR-PEP1&2 fluctuated less frequently than corresponding human peptides. MM-PBSA revealed that the VIR-PEP2 complex exhibited higher binding energy than the human peptide complex. This suggests that highly conserved structural peptides of high-risk HPV types homologous to human peptides could compete and bind avidly to the HLA allele associated with SLE and predispose HPV-infected individuals to SLE through molecular mimicry.Communicated by Ramaswamy H. Sarma.


Assuntos
Lúpus Eritematoso Sistêmico , Infecções por Papillomavirus , Humanos , Epitopos de Linfócito B , Mimetismo Molecular , Simulação de Acoplamento Molecular , Peptídeos/química , Epitopos de Linfócito T
9.
Comput Biol Med ; 152: 106315, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36495751

RESUMO

BACKGROUND: The primary source of death in the world is non-small cell lung cancer (NSCLC). However, NSCLCs pathophysiology is still not completely understood. The current work sought to study the differential expression of mRNAs involved in NSCLC and their interactions with miRNAs and circRNAs. METHODS: We utilized three microarray datasets (GSE21933, GSE27262, and GSE33532) from the GEO NCBI database to identify the differentially expressed genes (DEGs) in NSCLC. We employed DAVID Functional annotation tool to investigate the underlying GO biological process, molecular functions, and KEGG pathways involved in NSCLC. We performed the Protein-protein interaction (PPI) network, MCODE, and CytoHubba analysis from Cytoscape software to identify the significant DEGs in NSCLC. We utilized miRnet to anticipate and build interaction between miRNAs and mRNAs in NSCLC and ENCORI to predict the miRNA-circRNA relationships and build the ceRNA regulatory network. Finally, we executed the gene expression and Kaplan-Meier survival analysis to validate the significant DEGs in the ceRNA network utilizing TCGA NSCLC and GEPIA data. RESULTS: We revealed a total of 156 overlapped DEGs (47 upregulated and 109 downregulated genes) in NSCLC. The PPI network, MCODE, and CytoHubba analysis revealed 12 hub genes (cdkn3, rrm2, ccnb1, aurka, nuf2, tyms, kif11, hmmr, ccnb2, nek2, anln, and birc5) that are associated with NSCLC. We identified that these 12 genes encode 12 mRNAs that are strongly linked with 8 miRNAs, and further, we revealed that 1 circRNA was associated with this 5 miRNA. We constructed the ceRNAs network that contained 1circRNA-5miRNAs-7mRNAs. The expression of these seven significant genes in LUAD & LUSC (NSCLC) was considerably higher in the TCGA database than in normal tissues. Kaplan-Meier survival plot reveals that increased expression of these hub genes was related to a poor survival rate in LUAD. CONCLUSION: Overall, we developed a circRNA-miRNA-mRNA regulation network to study the probable mechanism of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , RNA Circular/genética , Redes Reguladoras de Genes , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Perfilação da Expressão Gênica , Neoplasias Pulmonares/genética , Quinases Relacionadas a NIMA/genética
10.
Front Mol Biosci ; 10: 1306046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274094

RESUMO

Background: In non-small-cell lung cancer (NSCLC), a pivotal factor in promoting cancer development is the rearrangement in the anaplastic lymphoma kinase ALK gene, resulting in elevated ALK protein expression. F1174C/L/V is the acquired secondary resistant mutation in ALK. Significant survival improvements have been seen while tyrosine kinase inhibitors specifically target ALK. Nevertheless, the emergence of drug resistance hinders the clinical effectiveness of these drugs. Objective: This research sought to find the binding affinity/inhibitory effects of the existing drug lorlatinib (LOR) and upcoming TPX-0131 (zotizalkib/TPX) and repotrectinib (TPX-0005/REP) inhibitors against ALK F1174C/L/V mutations using computational approaches to identify potential strategies over resistance. Methods: We conducted molecular docking, molecular dynamics simulation, and MMPBSA calculations to investigate how compact macrocyclic inhibitors, such as TPX-0131 and repotrectinib, fit within the ATP-binding boundary and differ from LOR. Results: Our results demonstrated that TPX-0131 and repotrectinib contributed to higher binding energy in F1174C and F1174L mutations than LOR. Repotrectinib showed greater binding energy in the F1174V mutation, whereas LOR and TPX-0131 exhibited similar binding energy. However, all three inhibitors showed significant binding energy toward F1174C/L/V mutations found in NSCLC. Conclusion: This comparative study of the potential binding effects of fourth-generation inhibitors TPX-0131 and repotrectinib and third-generation inhibitor LOR for ALK F1174C/L/V mutations revealed the atomistic insights of the binding mechanism. These computational findings enable us to carry out further research for the clinical implementation of fourth-generation ALK inhibitors on ALK-positive NSCLC.

11.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555140

RESUMO

The vital tissue homeostasis regulator p53 forms a tetramer when it binds to DNA and regulates the genes that mediate essential biological processes such as cell-cycle arrest, senescence, DNA repair, and apoptosis. Missense mutations in the core DNA-binding domain (109-292) simultaneously cause the loss of p53 tumor suppressor function and accumulation of the mutant p53 proteins that are carcinogenic. The most common p53 hotspot mutation at codon 248 in the DNA-binding region, where arginine (R) is substituted by tryptophan (W), glycine (G), leucine (L), proline (P), and glutamine (Q), is reported in various cancers. However, it is unclear how the p53 Arg248 mutation with distinct amino acid substitution affects the structure, function, and DNA binding affinity. Here, we characterized the pathogenicity and protein stability of p53 hotspot mutations at codon 248 using computational tools PredictSNP, Align GVGD, HOPE, ConSurf, and iStable. We found R248W, R248G, and R248P mutations highly deleterious and destabilizing. Further, we subjected all five R248 mutant-p53-DNA and wt-p53-DNA complexes to molecular dynamics simulation to investigate the structural stability and DNA binding affinity. From the MD simulation analysis, we observed increased RMSD, RMSF, and Rg values and decreased protein-DNA intermolecular hydrogen bonds in the R248-p53-DNA than the wt-p53-DNA complexes. Likewise, due to high SASA values, we observed the shrinkage of proteins in R248W, R248G, and R248P mutant-p53-DNA complexes. Compared to other mutant p53-DNA complexes, the R248W, R248G, and R248P mutant-p53-DNA complexes showed more structural alteration. MM-PBSA analysis showed decreased binding energies with DNA in all five R248-p53-DNA mutants than the wt-p53-DNA complexes. Henceforth, we conclude that the amino acid substitution of Arginine with the other five amino acids at codon 248 reduces the p53 protein's affinity for DNA and may disrupt cell division, resulting in a gain of p53 function. The proposed study influences the development of rationally designed molecular-targeted treatments that improve p53-based therapeutic outcomes in cancer.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Ligação Proteica , Mutação , Neoplasias/genética , Códon , DNA/química , Arginina/genética , Arginina/metabolismo
12.
Adv Protein Chem Struct Biol ; 131: 177-206, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35871890

RESUMO

Esophageal squamous cell carcinoma (ESCC) remains a serious concern globally due to many factors that including late diagnosis, lack of an ideal biomarker for diagnosis and prognosis, and high rate of mortality. In this study, we aimed to identify the essential dysregulated genes and molecular signatures associated with the progression and development of ESCC. The dataset with 15 ESCCs and the 15 adjacent normal tissue samples from the surrounding histopathologically tumor-free mucosa was selected. We applied bioinformatics pipelines including various topological parameters from MCODE, CytoNCA, and cytoHubba to prioritize the most significantly associated DEGs with ESCC. We performed functional enrichment annotation for the identified DEGs using DAVID and MetaCore™ GeneGo platforms. Furthermore, we validated the essential core genes in TCGA and GTEx datasets between the normal mucosa and ESCC for their expression levels. These DEGs were primarily enriched in positive regulation of transferase activity, negative regulation of organelle organization, cell cycle mitosis/S-phase transition, spindle organization/assembly, development, and regulation of angiogenesis. Subsequently, the DEGs were associated with the pathways such as oocyte meiosis, cell cycle, and DNA replication. Our study identified the eight-core genes (AURKA, AURKB, MCM2, CDC20, TPX2, PLK1, FOXM1, and MCM7) that are highly expressed among the ESCC, and TCGA dataset. The multigene comparison and principal component analysis resulted in elevated signals for the AURKA, MCM2, CDC20, TPX2, PLK1, and FOXM1. Overall, our study reported GO profiles and molecular signatures that might help researchers to grasp the pathological mechanisms underlying ESCC development and eventually provide novel therapeutic and diagnostic strategies.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Biologia Computacional/métodos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Humanos , Transcriptoma/genética
13.
Comput Biol Med ; 148: 105701, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35753820

RESUMO

BACKGROUND: Non-small-cell lung cancer (NSCLC) is the most common type of lung cancer. NSCLC accounts for 84% of all lung cancer cases. In recent years, advances in pathway understanding, methods for discovering novel genetic biomarkers, and new drugs designed to inhibit the signaling cascades have enabled clinicians to personalize therapy for NSCLC. OBJECTIVES: The primary aim of this study is to identify the genes associated with NSCLC that harbor pathogenic variants that could be causative for NSCLC. The second aim is to investigate their roles in different pathways that lead to NSCLC. METHODS: We examined exome-sequencing datasets from 54 NSCLC patients to characterize the variants associated with NSCLC. RESULTS: Our findings revealed that 17 variants in 14 genes were considered highly pathogenic, including CDKN2A, ERBB2, FOXP1, IDH1, JAK3, KMT2D, K-Ras, MSH3, MSH6, POLE, RNF43, TCF7L2, TP53, and TSC1. Gene set enrichment analysis revealed the involvement of transmembrane receptor protein tyrosine kinase activity, protein binding, ATP binding, phosphatidylinositol-4,5-bisphosphate 3-kinase, and Ras guanyl-nucleotide exchange factor activity. Pathway analysis of these genes yielded different cancer-related pathways, including colorectal, prostate, endometrial, pancreatic, PI3K-Akt signaling pathways, and signaling pathways regulating pluripotency of stem cells. Module 1 from protein-protein interactions (PPIs) identified genes that harbor pathogenic SNPs. Three of the most deleterious SNPs are ERBB2 (rs1196929947), K-Ras (rs121913529), and POLE (rs751425952). Interestingly, one patient has a pathogenic K-Ras variant (rs121913529) co-occurred with the missense variant (rs752054698) inTSC1 gene. CONCLUSION: This study maps highly pathogenic variants associated with NSCLC and investigates their contributions to the pathogenesis of NSCLC. This study sheds light on the potential applications of precision medicine in patients with NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Fatores de Transcrição Forkhead , Humanos , Masculino , Fosfatidilinositol 3-Quinases , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras , Sequenciamento do Exoma
14.
World Neurosurg ; 164: e82-e90, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35378317

RESUMO

BACKGROUND: Supratentorial ependymomas (STEs) are an aggressive group of ependymomas, topographically distinct from their posterior fossa and spinal counterparts. Zinc finger translocation associated (ZFTA) fusion-positive cases have been reported to account for the majority of STEs, although data on its association with poorer outcomes are inconsistent. MATERIALS AND METHODS: We assessed the prevalence of the ZFTA fusion by reverse-transcription polymerase chain reaction and fluorescence in situ hybridization in a cohort of 61 patients (68 samples) with STE. Our primary outcome was to determine the role of the ZFTA fusion on progression-free and overall survival of patients with STE. Our secondary objectives were to assess the impact of ZFTA fusion on nuclear factor (NF)-kB pathway signaling via surrogate markers of this pathway, namely COX-2, CCND1, and L1 cell adhesion molecule. RESULTS: ZFTA fusion was noted in 21.3% of STEs in our cohort. The presence of this rearrangement did not significantly impact the progression-free or overall survival of patients with STEs and was not associated with upregulation of markers of the NF-kB pathway. Only gross total resection was significantly associated with better progression-free survival. CONCLUSIONS: In contradiction to previous reports from across the world, the ZFTA fusion is far less prevalent among our population. It does not appear to drive NF-kB signaling or significantly affect outcomes. Gross total resection must be attempted in all cases of STE and adjuvant radiation and/or chemotherapy employed when gross total resection is not achieved.


Assuntos
Ependimoma , Neoplasias Supratentoriais , Ependimoma/genética , Ependimoma/metabolismo , Ependimoma/cirurgia , Humanos , Hibridização in Situ Fluorescente , NF-kappa B/metabolismo , Prevalência , Neoplasias Supratentoriais/genética , Neoplasias Supratentoriais/metabolismo , Neoplasias Supratentoriais/cirurgia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Translocação Genética/genética , Dedos de Zinco
15.
Adv Protein Chem Struct Biol ; 129: 247-273, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35305721

RESUMO

Rheumatoid arthritis (RA) has one of the highest disability rates among inflammatory joint disorders. However, the reason and possible molecular events are still unclear. There are various treatment options available, but no complete cure. To obtain early diagnosis and successful medication in RA, it is necessary to explore gene susceptibility and pathogenic factors. The main intend of our work is to explore the immune-related hub genes with similar functions that are differentially expressed in RA patients. Three datasets such as GSE21959, GSE55457, and GSE77298, were taken to analyze the differently expressed genes (DEGs) among 55 RA and 33 control samples. We obtained 331 upregulated and 275 downregulated DEGs from three Gene Expression Omnibus (GEO) datasets using the R package. Furthermore, a protein-protein interaction network was built for upregulated and downregulated DEGs using Cytoscape. Subsequently, MCODE analysis was performed and obtained the top two modules in each DEG's upregulated and downregulated protein-protein interactions (PPIs) network. CytoNCA and cytoHubba were performed and identified overlapping DEGs. In addition, we narrowed down DEGs by filtering with immune-related genes and identified DE-IRGs. Gene ontology (GO) and KEGG pathway analysis in upregulated and downregulated DEGs were executed with the DAVID platform. Our study obtained the nine most significant DE-IRGs in RA such as CXCR4, CDK1, BUB1, BIRC5, AGTR1, EGFR, EDNRB, KALRN, and GHSR. Among them, CXCR4, CDK1, BUB1, and BIRC5 are overexpressed in RA and may contribute to the pathophysiology of the disease. Similarly, AGTR1, EGFR, EDNRB, KALRN, and GHSR are all low expressed in RA and may have a contribution to pathogenesis. GO, KEGG functional enrichment, and GeneMANIA showed that the dysregulated process of DE-IRGs causes RA development and progression. These findings may be helpful in future studies in RA diagnosis and therapy.


Assuntos
Artrite Reumatoide , Redes Reguladoras de Genes , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Mapas de Interação de Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...